Note

An optimization problem in capillary gas chromatography: a generalization

MARCEL J. E. GOLAY
The Perkin-Elmer Corporation, Norwalk, CT 06856 (U.S.A.)
(Received April 8th, 1986)

In a former note ${ }^{1}$, the conditions were considered under which a capacity ratio would be optimal for the separation of the last component to be eluted from a column.

When the component for which separation should be optimized is not the last component, the formulae derived earlier should be modified as follows.

Let k designate the capacity ratio of the component for which optimal separation should be realized, and let αk, with $\alpha>1$, designate the capacity ratio of the last component desired for the record. All considerations elaborated in the earlier note ${ }^{1}$ are valid up to eqn. 4 a . In this equation, however, the time of passage of the component of interest, t_{s}, should be expressed as a function of the time of passage, t_{e}, of the last component by the formula:

$$
t_{\mathrm{s}}=\frac{1+k}{1+\alpha k} t_{\mathrm{e}}
$$

We obtain then:

$$
Q(k, b, \alpha)=\frac{k}{216^{1 / 4}(1+\alpha k)^{1 / 4}(1+k)\left[\frac{1}{48} f_{k}+\frac{b k^{3}}{9(1+k)^{2}}\right]^{1 / 4}}
$$

where:

$$
\frac{\Delta t_{\mathrm{s}}}{\Delta t_{\mathrm{b}}}=\varepsilon\left(\frac{p_{i} \mathrm{t}_{\mathrm{e}}}{\mu}\right)^{1 / 4} Q(k, b, \alpha)
$$

The table given earlier for the parameters of interest should then be extended as follows for three selected values of α :

$b=$	0	0.1	0.3	1	3	10	30	100
$k=$	2.692	2.366	2.032	1.581	1.206	0.899	0.713	0.593
$Q=$	0.221	0.216	0.208	0.192	0.170	0.141	0.113	0.087
$y=$	2.599	2.547	2.475	2.327	2.113	1.790	1.430	1.009
$\alpha=3$								
$b=$	0	0.1	0.3	1	3	10	30	100
$k=$	2.148	1.929	1.684	1.326	1.011	0.741	0.570	0.450
$Q=$	0.177	0.174	0.169	0.158	0.142	0.120	0.098	0.076
$y=$	2.713	2.680	2.632	2.525	2.361	2.095	1.774	1.361
$\alpha=10$								
$b=$	0	0.1	0.3	1	3	10	30	100
$k=$	1.892	1.713	1.503	1.185	0.896	0.643	0.477	0.355
$Q=$	0.135	0.133	0.129	0.122	0.111	0.095	0.079	0.062
$y=$	2.786	2.764	2.732	2.658	2.541	2.345	2.100	1.761

REFERENCE

1 M. J. E. Golay, J. Chromatogr., 348 (1985) 416-420.

