CHROM. 18 702

Note

An optimization problem in capillary gas chromatography: a generalization

MARCEL J. E. GOLAY The Perkin-Elmer Corporation, Norwalk, CT 06856 (U.S.A.) (Received April 8th, 1986)

In a former note¹, the conditions were considered under which a capacity ratio would be optimal for the separation of the last component to be eluted from a column.

When the component for which separation should be optimized is not the last component, the formulae derived earlier should be modified as follows.

Let k designate the capacity ratio of the component for which optimal separation should be realized, and let αk , with $\alpha > 1$, designate the capacity ratio of the last component desired for the record. All considerations elaborated in the earlier note¹ are valid up to eqn. 4a. In this equation, however, the time of passage of the component of interest, t_s , should be expressed as a function of the time of passage, t_e , of the last component by the formula:

$$t_{\rm s}=\frac{1+k}{1+\alpha k}\,t_{\rm e}$$

We obtain then:

$$Q(k, b, \alpha) = \frac{k}{216^{1/4} (1 + \alpha k)^{1/4} (1 + k) \left[\frac{1}{48} f_k + \frac{bk^3}{9 (1 + k)^2}\right]^{1/4}}$$

where:

$$\frac{\Delta t_{\rm s}}{\Delta t_{\rm b}} = \varepsilon \left(\frac{p_i t_{\rm c}}{\mu}\right)^{1/4} Q(k, b, \alpha)$$

The table given earlier for the parameters of interest should then be extended as follows for three selected values of α :

$\alpha = 1$								
$\overline{b} =$	0	0.1	0.3	1	3	10	30	100
k =	2.692	2.366	2.032	1.581	1.206	0.899	0.713	0.593
Q =	0.221	0.216	0.208	0.192	0.170	0.141	0.113	0.087
$\overline{y} =$	2.599	2.547	2.475	2.327	2.113	1.790	1.430	1.009
				$\alpha = 3$				
b =	0	0.1	0.3	1	3	10	30	100
k =	2.148	1.929	1.684	1.326	1.011	0.741	0.570	0.450
2 =	0.177	0.174	0.169	0.158	0.142	0.120	0.098	0.076
, =	2.713	2.680	2.632	2.525	2.361	2.095	1.774	1.361
				$\alpha = 10$				
<i>b</i> =	0	0.1	0.3	1	3	10	30	100
k =	1.892	1.713	1.503	1.185	0.896	0.643	0.477	0.355
Q =	0.135	0.133	0.129	0.122	0.111	0.095	0.079	0.062
v =	2.786	2.764	2.732	2.658	2.541	2.345	2.100	1.761

REFERENCE

1 M. J. E. Golay, J. Chromatogr., 348 (1985) 416-420.